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Abstract
DNA knots formed under extreme conditions of condensation, as in
bacteriophage P4, are difficult to analyze experimentally and theoretically.
In this paper, we propose to use the uniform random polygon model as a
supplementary method to the existing methods for generating random knots
in confinement. The uniform random polygon model allows us to sample
knots with large crossing numbers and also to generate large diagrammatically
prime knot diagrams. We show numerically that uniform random polygons
sample knots with large minimum crossing numbers and certain complicated
knot invariants (as those observed experimentally). We do this in terms of the
knot determinants or colorings. Our numerical results suggest that the average
determinant of a uniform random polygon of n vertices grows faster than
O(en2

). We also investigate the complexity of prime knot diagrams. We show
rigorously that the probability that a randomly selected 2D uniform random
polygon of n vertices is almost diagrammatically prime goes to 1 as n goes to
infinity. Furthermore, the average number of crossings in such a diagram is at
the order of O(n2). Therefore, the two-dimensional uniform random polygons
offer an effective way in sampling large (prime) knots, which can be useful in
various applications.

PACS numbers: 02.10.Kn, 02.40.Sf, 05.40.Fb
Mathematics Subject Classification: 57M25

1. Introduction

Knotted circular polymers are commonly observed in chemistry and biology. Knots can be
synthesized in chemistry laboratories for the purpose of studying chemical isomerism and
chirality of molecules [23] and have been found in computational chemistry studies where
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long polyethylene chains in solution are simulated [40]. Biopolymers such as RNA, DNA
and proteins also show a large repertoire of knots with distinct biological information. For
instance, it has recently been found that the backbone of about 40 proteins in the protein
data-bank are knotted (upon appropriate closure of the ends). These folding patterns provide
a paradigm to study protein folding processes and are believed to have a functional role ([41],
reviewed in [36]).

DNA knots are found as products of the action of diverse types of enzymes, such
as recombinases [29, 39], topoisomerases [9, 18], polymerases [28] and condensins
[20, 30], as well as products of cyclization reactions of linear molecules [4, 32, 34]. Both the
knotting probability and the knot complexity have been well characterized experimentally and
computationally for the closure of DNA chains in free solution [21, 32, 34, 38]. Furthermore,
these studies have been supported by analytical results on polymer chains that estimate the rate
of growth of the knotting probability and knot distribution as a function of the chain length
[10, 15, 35].

The problem of DNA knotting in confinement remains largely unexplained despite its
important biological implications in chromosome biology. A system particularly amenable
for investigating this problem is that of bacteriophage P4 [22, 43]. The genome of these viruses
is released in a circular form when treated with protein denaturing agents. Analysis of these
DNA circles has shown a very high knotting probability as well as extreme complexity of the
knot populations [4]. Knowing the probability of occurrence of these knots as well as their
complexity may help us to understand the organization of DNA inside bacteriophage. For
example, analysis of the knot distribution of P4 knots of up to seven crossings has revealed that
the DNA is chirally organized while in the phage [5]. Furthermore, it has been conjectured
that a good proportion of these knots are prime [2] as it is observed in simulation studies of
collapsed polygons [6]. However, due to experimental limitations DNA knots with more than
seven crossings have not yet been analyzed and remains a difficult challenge.

Several researchers have investigated the knotting probability as well as the knot
complexity of polymer chains in confinement [4, 5, 19, 24–26, 37]. However, progress
in this area is thwarted by the lack of analytical results that support the computational efforts.
Such results exist only for polygons in the simple cubic lattice that are confined to slabs or
prisms [31] and remain open for polygons in confined volumes such as spheres or boxes.

Here we use the uniform random polygon (URP) model to investigate the complexity
of knots confined to cubical boxes (an URP is illustrated in figure 1). The URP model was
initially proposed by Millett [26] to study knotting in confined spaces and later used by Arsuaga
et al to investigate the linking probability of two polygons in confinement [3]. An obvious
disadvantage of the URP model is that the flexibility of the chain is not well defined except
for limit cases. However, the URP model offers a valuable alternative investigating tool for us
since it shows very similar topological qualitative results as other polymer models, and allows
proving certain rigorous mathematical results while drastically reducing computational time.

This paper is organized as follows. We first derive some basic results concerning the
mean average crossing number (mean ACN) of a uniform random polygon (section 2). We
find that the mean ACN of URP knots grows at the order O(n2). Such results give us some
perspective about the complexity of the knot and of its projection diagrams. In section 3,
we use the determinant of a knot and the colorability of the knot to investigate the knotting
probability and the complexity of the knots sampled. We find that the determinant increases
at a rate of O

(
e0.0014n2.4)

, suggesting that it is possible that the rate of growth for the average
determinant of an URP of n vertices is super exponential in general (i.e., faster than O(en)).
For URPs with the number of vertices in the range of our numerical study, we found that
the knotting probability fits well with the curve 1 − e−bn3

, where b ≈ 0.000 082, though this
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Figure 1. A uniform random polygon confined in the unit cube.

is not to be expected for large values of n. In section 4 we investigate the complexity of
a population of knot diagrams and introduce the concept of almost diagrammatically prime
diagrams. This study is motivated by the finding that prime knots may be prevalent over
composite knots in confinement [2, 6] and because it is important in knot theory itself since
prime knots in general are studied and tabulated through the study of their minimum diagrams
which are diagrammatically prime. We rigorously prove that as n increases, the probability
that a 2D uniform random polygon of n vertices is almost diagrammatically prime goes to 1
at a rate of at least 1 − O

(
1
nν

)
, for some constant ν � 0.35. We complement this analytical

result by a numerical study in which we sample prime alternating knots using 2D uniform
random polygons as the knot diagrams. These numerical results show very complicated knots
that can be achieved with as few as 12 vertices, supporting our argument that the 2D URPs
are good candidates for sampling (complicated) large prime knot diagrams. We end the
paper by discussing possible applications of our results to the problem of DNA packing in
bacteriophages and to the problem of generating complicated prime knots.

2. Uniform random polygons in a confined space

For i = 1, 2, . . . , n, let Ui = (ui1, ui2, ui3) be a three-dimensional random point that is
uniformly distributed in the unit cube C3 (or in a unit ball) such that U1, U2, . . . , Un are
independent. Let ei (called the ith edge) be the line segment joining Ui and Ui+1, then the
edges e1, e2, . . . , en define a uniform random polygon Rn in the confined space (either the
cube or the sphere), where en is the line segment joining Un and U1. If in this definition, we
only consider the first two coordinates of each Ui , then we obtain a two-dimensional uniform
random polygon confined in the unit square C2.

First, let us consider the case of two oriented random edges �′ and �′′. Since the end
points of the edges are independent and are uniformly distributed in C3, the probability that
the projections of �′ and �′′ intersect each other is a positive number, which we will call 2p.
Note that 2p is the same as the mean average crossing number between �′ and �′′.

Now consider a uniform random polygon Rn with n edges e1, e2, . . . , en in that consecutive
order. Let a(ei, ej ) be the average crossing number between ei and ej , then the average crossing
number of Rn is

χn = 1

2

n∑
i=1

∑
j �=i−1,i,i+1

a(ei, ej ).
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Figure 2. The mean ACN of uniform random polygons up to 80 vertices.

It follows that the expected value of the average crossing number of Rn is

E(χn) = 1

2

n∑
i=1

∑
j �=i−1,i,i+1

E(a(ei, ej )) = p(n − 3)n.

Note that E(χn) is identical to the mean average crossing number of a 2D Rn in the case that
the confining space is the unit square.

Through computer simulations, we have estimated that 2p = 0.23 ± 0.004 so E(χn) ≈
0.115(n− 3)n. Figure 2 shows the mean ACN obtained through numerical simulations where
the x-axis is the number of vertices, the y-axis is the mean ACN and the fitting curve is
y = 0.115(x − 3)x. Note that the fit is near perfect.

It is worthwhile for us pointing out here that the behavior of the mean ACN for URPs
is very different from that of a random polygon without volume confinement. For example,
the mean ACN of an equilateral random polygon of n vertices is shown to grow at a rate of
O(n ln n) [11] and similar result hold for Gaussian random polygons as well [12].

3. The knot complexity of uniform random polygons

In this section, we wish to demonstrate the complexity of knots generated using the 3D uniform
random polygons in C3. Determining the knot complexity of a random polygon in a confined
space is a difficult problem even when the number of vertices in the polygon is relatively small.
For example, a uniform random polygon with 100 vertices typically has a regular projection
with up to the order of 1115 crossings. Although some crossings can be eliminated by obvious
Reidemeister I or II moves, it is not clear how many of these crossings can be removed in this
fashion. It is likely that we may still have to deal with a diagram with hundreds of crossings.
Computing a knot polynomial from such a diagram is out of question since we apparently lack
the computing power at this stage. Instead, we will employ a relatively simple knot complexity
measure that is easy to compute, namely the determinant and the coloring of knots. Let us
first give the definition of the coloring of a knot for the convenience of our reader. Interested
reader may refer to [27] for more details.

Let P be a projection of a knot K with m crossing points. Let A = {A1, . . . , Am} be the
set of over-arcs. A coloring (or a p-coloring) is a map Col : A → Zp for an odd prime p such



Sampling large random knots in a confined space 11701

that at every crossing the following condition is satisfied: If Ar and As are under-arcs and Au

is the over-arc, then Col(Ar) + Col(As) ≡ 2Col(Au) mod p.
The image Col(Au) is called a color assigned to the arc Au. A coloring is called trivial if

it assigns a single color to all the arcs. The knot K is said to be p-colorable if there exists a
non-trivial p-coloring.

Let K be a knot and �K(t) be the Alexander polynomial of K. �K(−1) is called the
determinant of K and is denoted by Det(K). It is known that a knot K is p-colorable for a
prime p if and only if p divides Det(K) [16].

For a knot K, the stick number of K is defined as the minimum number of straight line
segments required to form a polygonal representation of K. It is not hard to see that the stick
number for any non-trivial knot is at least 6 [1]. In fact, only the trefoil can have stick
number 6 [7]. Thus we will start from n = 6 in our numerical study. For each n, we generate
m uniform random polygons of n vertices and compute the determinant for each one of them.
We then compile our numerical result in a list DET(n,m) whose entries are integer pairs
[k, �], where k is a positive integer and � is the frequency of uniform random polygons with
determinant k. For example, DET(n,m) = {[1,m]} for all n < 6. For n = 6, our output
was DET(6, 100 000) = {[1, 99 534], [3, 466]}. This means that out of the 100 000 uniform
random polygons of 6 vertices we generated, 99 534 of them are the unknots and 466 of them
are trefoils. The following is a partial list of our numerical results concerning the determinants
of the uniform random polygons, using only n = 6, 10, 12, 15, 17, 20. For clarity, we have
omitted the entry for sample size since they are all 100 000 in this study.

DET(6) = {[1, 99 534], [3, 466]}
DET(10) = {[1, 92 336], [3, 6410], [5, 945], [7, 235], [9, 27], [11, 22], [13, 22], [15, 3]}
DET(12) = {[1, 85 470], [3, 10 749], [5, 2450], [7, 781], [9, 215], [11, 143], [13, 97],

[15, 37], [17, 14], [19, 12], [21, 13], [23, 4], [25, 1], [27, 2], [29, 4], [31, 1],

[35, 4], [39, 1], [47, 1], [53, 1]}
DET(15) = {[1, 72 498], [3, 16 415], [5, 5522], [7, 2417], [9, 987], [11, 682], [13, 491],

[15, 240], [17, 167], [19, 153], [21, 106], [23, 63], [25, 50], [27, 42],

[29, 20], [31, 29], [33, 18], [35, 20], [37, 13], [39, 7], [41, 9], [43, 9],

[45, 5], [47, 6], [49, 5], [51, 3], [53, 3], [55, 3], [57, 4], [59, 2], [69, 1],

[71, 2], [73, 2], [83, 1], [95, 1], [139, 1], [143, 1], [145, 1], [157, 1]}
DET(17) = {[1, 63 211], [3, 18 514], [5, 7632], [7, 3742], [9, 2012], [11, 1267], [13, 909],

[15, 555], [17, 422], [19, 330], [21, 284], [23, 157], [25, 130], [27, 134],

[29, 81], [31, 85], [33, 65], [35, 54], [37, 51], [39, 42], [41, 21], [43, 34],

[45, 37], [47, 18], [49, 24], [51, 12], [53, 15], [55, 15], [57, 12], [59, 12],

[61, 18], [63, 3], [65, 6], [67, 9], [69, 6], [71, 5], [73, 2], [75, 6], [77, 5],

[79, 4], [81, 3], [83, 4], [85, 2], [87, 1], [89, 2], [91, 2], [93, 4], [95, 3],

[97, 2], [99, 4], [101, 1], [103, 3], [107, 2], [109, 2], [111, 2], [113, 1],

[115, 2], [119, 2], [121, 1], [125, 2], [131, 1], [139, 1], [145, 2], [165, 1],

[167, 1], [173, 1], [181, 2], [185, 1], [203, 1], [207, 1], [293, 1]}
DET(20) = {[1, 48 628], [3, 19 801], [5, 9452], [7, 5589], [9, 3642], [11, 2445],

[13, 1938], [15, 1303], [17, 954], [19, 910], [21, 698], [23, 480], [25, 454],

[27, 480], [29, 340], [31, 286], [33, 216], [35, 215], [37, 181], [39, 165],
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Figure 3. The lower bound of knotting probability for URPs up to 40 segments based on the
percentage of URPs with non-trivial determinants.

[41, 155], [43, 114], [45, 122], [47, 90], [49, 87], [51, 82], [53, 83], [55, 82],

[57, 68], [59, 61], [61, 54], [63, 60], [65, 39], [67, 33], [69, 37], [71, 35],

[73, 26], [75, 40], [77, 19], [79, 24], [81, 30], [83, 24], [85, 19], [87, 23],

[89, 16], [91, 18], [93, 21], [95, 15], [97, 11], [99, 19], [101, 13], [103, 11],

[105, 16], [107, 9], [109, 6], [111, 4], [113, 12], [115, 13], [117, 13], [119, 5],

[121, 9], [123, 8], [125, 8], [127, 6], [129, 8], [131, 9], [133, 12], [135, 3],

[137, 1], [139, 5], [141, 2], [143, 7], [145, 3], [147, 2], [149, 2], [151, 4],

[153, 7], [155, 2], [157, 3], [159, 2], [161, 1], [163, 2], [165, 3], [167, 4],

[169, 2], [171, 3], [173, 2], [175, 1], [177, 4], [179, 4], [181, 2], [183, 2],

[185, 1], [187, 4], [189, 2], [191, 2], [193, 3], [195, 1], [199, 1], [201, 3],

[203, 1], [207, 2], [209, 2], [211, 3], [213, 1], [215, 4], [217, 1], [219, 1],

[223, 3], [225, 2], [229, 1], [233, 1], [235, 2], [237, 1], [241, 1], [243, 1],

[245, 1], [249, 2], [257, 2], [259, 1], [265, 1], [269, 1], [281, 1], [289, 1],

[293, 1], [317, 1], [319, 1], [325, 1], [331, 1], [341, 1], [369, 1], [381, 1],

[389, 1], [391, 1], [399, 1], [403, 1], [409, 1], [419, 1], [435, 1], [451, 1],

[455, 1], [459, 1], [475, 1], [483, 1], [495, 1], [513, 1], [519, 1], [521, 1],

[567, 1], [771, 1], [807, 1].}

First, we point out that the numerical data can be used to give a lower bound on the
knotting probability of a 3D URP. Figure 3 is the plot of the percentage of URPs with non-
trivial determinants, where the horizonal axis is the number of vertices of the URPs. The fitted
curve given here is 1 − exp(−0.000 082n3). But this is not to be expected as a general rule
as the following argument shows that the trivial knot probability of an Rn is at least of order
exp(−n ln n), which is larger than exp(−0.000 082n3) for large values of n. Let us divide
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Figure 4. An Rn is a trivial knot if its projection follows the pattern shown here. This is the case
of k = 4 and n = 13.

the unit square C2 (which is the base of the unit cube and is on the xy plane) into k2 equal
size squares such that (k − 1)2 < n � k2. Number these small squares in a sequential order
as shown in figure 4 (for the case of k = 4). Apparently, for each given 1 � j � n, the
probability for the projection of Uj (to the xy plane) to fall in the j th square is equal to the
area of the square, which is 1/k2. Thus the probability this happens for all j at the same time
is precisely (1/k2)n, which is of the order (1/n)n = n−n = exp(−n ln n), as one can easily
check. However, when this happens, the polygon is the trivial knot. On the other hand, since
the maximum number of crossings in the projection of a URP of n segments is bounded above
by n2, this numerical result may suggest that the trivial knot probability of a URP tends to 0
faster than e−b0c, where b0 is some constant and c is the number of crossings in the projection
of the Rn onto the xy plane.

Second, as n increases, the maximum determinant in our sample increases dramatically.
For example, for n = 59, a small sample with only 50 data points yields a maximum
determinant of 12 088 427 779. The following figure is the logarithmic plot of the average
determinant from our samples. In fact, the logarithmic plot of the average determinants given
in figure 5 suggests that the growth of the average determinant of Rn is likely to be faster than
O(exp(n2)).

Third, we present our numerical output on the coloring of the uniform random knots.
Let n be the number of vertices of the random polygon, m be the number of uniform random
polygons generated in our data set, and we will let COL(n,m) be the list of outputs, which
consists of entries of the form [p, �], where the first entry is of the form [1, �] with � indicating
the number of polygons that can only be trivially colored and p > 2 is a prime in other entries
with the corresponding � the number of polygons in the sample that are p-colorable. For
example, COL(10, 1000) = {[1, 914], [3, 68], [5, 21]} means that out of the 1000 uniform
random polygons generated, 914 of them can only be trivially colored, 68 of them have
determinants divisible by 3 (hence are 3-colorable) and 21 of them have determinants divisible
by 5 (hence are 5-colorable). Note that since a knot can be both 3-colorable and 5-colorable,
it is possible that a polygon is multiply counted in this method. For example, in this example
of COL(10, 1000) = {[1, 914], [3, 68], [5, 21]}, there are three polygons that are both 3-
colorable and 5-colorable. That is, the summation of the � entries of COL(n,m) is generally
larger than m. For each n between 6 and 30, we generated 100 000 uniform random knots. A
few selected output list are presented in the following table. Again we omit the sample size in
COL since they are all 100 000.
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Figure 5. The logarithmic plot of the average determinants of uniform random polygons with up
to 30 vertices, where the equation of the fitting curve is y = −0.18 + 0.0014x2.4.

COL(6) = {[1, 99 534], [3, 466]}
COL(10) = {[1, 92 336], [3, 6440], [5, 948], [7, 235], [11, 22], [13, 22]}
COL(12) = {[1, 85 470], [3, 11017], [5, 2492], [7, 798], [11, 143], [13, 98], [17, 14],

[19, 12], [23, 4], [29, 4], [31, 1], [47, 1], [53, 1]}
COL(15) = {[1, 72 498], [3, 17 828], [5, 5842], [7, 2548], [11, 704], [13, 499], [17, 499],

[19, 158], [23, 64], [29, 21], [31, 29], [37, 13], [41, 9], [43, 9],

[47, 6], [53, 3], [59, 2], [71, 2], [73, 2], [83, 1], [139, 1], [157, 1]}
COL(17) = {[1, 63 211], [3, 21 698], [5, 8448], [7, 4117], [11, 1358], [13, 959],

[17, 438], [19, 345], [23, 166], [29, 85], [31, 89], [37, 54],

[41, 21], [43, 34], [47, 18], [53, 15], [59, 12], [61, 18], [67, 9],

[71, 5], [73, 2], [79, 4], [83, 4], [89, 2], [97, 2], [101, 1], [103, 3],

[107, 2], [109, 2], [113, 1], [131, 1], [139, 1], [167, 1], [173, 1],

[181, 2], [293, 1]}
COL(20) = {[1, 48 628], [3, 26 909], [5, 11 807], [7, 6732], [11, 2810], [13, 2186],

[17, 1074], [19, 1013], [23, 535], [29, 369], [31, 312], [37, 187],

[41, 165], [43, 126], [47, 94], [53, 86], [59, 65], [61, 56], [67, 36],

[71, 36], [73, 27], [79, 25], [83, 26], [89, 16], [97, 11], [101, 13],

[103, 11], [107, 9], [109, 6], [113, 12], [127, 7], [131, 9], [137, 1],

[139, 5], [149, 2], [151, 4], [157, 3], [163, 2], [167, 4], [173, 3],

[179, 4], [181, 2], [191, 2], [193, 3], [199, 1], [211, 3], [223, 3],

[229, 1], [233, 1], [241, 1], [257, 2], [269, 1], [281, 1], [293, 1],

[317, 1], [331, 1], [389, 1], [409, 1], [419, 1], [521, 1]}
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It is evident that even for the relatively small value of n = 20, many polygons sampled
are fairly complicated knots. On the other hand, the average number of colors per random
polygon turns out to be a fairly slow growth number. For the data set we listed above
for n = 6, 10, 12, 15, 17 and 20, the corresponding average numbers of colors per polygon
are 1.004 66, 1.076 67, 1.145 85, 1.279 12, 1.379 19 and 1.548 26, indicating that for most
polygons in the small range of n we have studied can only allow one coloring, trivial or
non-trivial. On the other hand, the average value of the maximum coloring an URP admits can
grow at much faster rate. For example, in our small sample of 50 URPs of n = 59 vertices, we
already had a maximum determinant of 12 088 427 779; however, it has only four nontrivial
prime factors (17, 19, 53 and 706 141). Further studies are needed in order to have a more
complete picture. However, the factoring of many large determinants is very time consuming
in computation and is the main obstacle in carrying out this further study.

4. Uniform random polygons as knot diagrams

In this section, we are primarily interested in producing diagrammatically prime diagrams, that
is, 4-regular graphs without cut vertices and are more than two-edge connected. A cut vertex
of a graph is a vertex of the graph so that the removal of the vertex (together with the edges
incident to it) will divide the graph into at least two disjoint components. A graph is called
k-edge connected if the graph is connected and removing any k −1 edges of the graph will not
change that. For a plane graph that is also a knot diagram (not a link diagram), if removing any
two edges cannot disconnect the graph, then removing any three edges will not disconnect the
graph either. That is, if the graph is three-edge connected, then it is also four-edge connected
[13]. Here we will treat the 2D uniform random polygons as random knot diagrams. Note
that when we treat a 2D polygon as a graph, the vertices of the graph are the crossings of the
polygon while the vertices of the polygon itself are not vertices of the graph. Since no crossing
may involve three or more distinct segments of the polygon with probability 1, we will obtain
a 4-regular plane graph when we sample a 2D uniform random polygon with probability 1.
However, there is no automatic guarantee that such a graph contains no cut vertices and is
four-edge connected. Finally, we point out that in the case that the graph contains a loop
vertex, then it is two-edge connected (however, a loop vertex is not a cut vertex).

Definition 1. A plane 4-regular graph is said to be almost diagrammatically prime if it
contains no cut vertices and becomes four-edge connected once the loop edges (if there are
any) are removed (and the corresponding vertices are no longer treated as vertices) (see
figure 6).

From an almost diagrammatically prime diagram, one can easily construct an alternating
knot that is also prime, as shown in figure 7.

The following is our main result of this section.

Theorem 1. Let Rn be a 2D uniform random polygon confined in C2. Then as a plane
4-regular graph, the probability that Rn is almost diagrammatically prime is of the order at
least 1 − O

(
1
nν

)
, where the constant ν can be chosen to be at least 0.35.

We need some preparation before we proceed to prove the theorem. Let α be a constant
number between −1 and 0. Its exact value will be determined later. Let us first consider a line
segment � confined in C2 whose length is at least nα and at least one end point of it is of a
distance nα away from the boundary of C2. Assume further that there is a random line segment
�′ whose two end points are independent and are uniformly distributed in C2. We would like
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Figure 6. The removal of a loop edge in plane graph produced by a 2D polygon: The solid dot is
the vertex of the graph which is a crossing of the polygon whereas the vertices of the polygon are
marked by circles.

Figure 7. The construction of an alternating prime knot from an almost diagrammatically prime
diagram.

P’

P

n
β

n
α

L’
L

Figure 8. The shaded region has an area at least of the order O(nα+β).

to bound from below the probability that �′ intersects �. We claim that this probability is at
least of the order O(n2α+β), where β is some negative constant between α and 0. (We will
eventually use α = −0.45 and β = −0.05.) To see this, let us extend � to a full straight
line L. L divides C2 into two parts. Choose the part that has a bigger area and draw a line L′

through this part that is parallel to L and is of a distance nβ to L. If n is large, nβ is small so
the area of the part of C2 divided by L′ that does not contain � is at least 1/4. It follows that
the probability for one end P of �′ to fall in this area is at least 1/4. When this happens, if
the other end Q of �′ falls into the shaded region as shown in figure 8, �′ will intersect �. An
extreme case for the position of P is shown in figure 8 (marked as P ′). It is easy to see that the
shaded region contains the right triangle (marked in black) and the height of the right triangle
is of the order O(nα+β). It follows that the area of the shaded region is of an order at least
O(n2α+β). Thus the probability of �′ intersecting � is at least O(n2α+β) · 1

4 = O(n2α+β), since
P and Q are independent random points. This leads to the following lemma.
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Lemma 1. Let α and β be two negative constants such that α < β, 2α + β + 1 > 0 and let �

be a line segment confined in C2 whose length is at least nα . Furthermore, at least one end
point of � is of a distance nα away from the boundary of C2. Let �1, �2, . . . , �k be k random
line segments whose end points are independent random points uniformly distributed in C2.
Then if k � an, for some constant a > 0, then the probability that at least one �j intersects �

is of the order at least 1 − exp(−bn1+2α+β), for some constant b > 0.

Proof. Since the end points of the �j ’s are independent, the probability that none of the �j ’s
intersects � is at most O((1 − n2α+β)k). Substituting an for k, we have

(1 − n2α+β)an = ((1 − n2α+β)n
−2α−β

)an1+2α+β

< exp(−bn1+2α+β),

for some constant b > 0 since

lim
n→∞(1 − n2α+β)n

−2α−β = e−1.
�

We are now ready to prove our theorem.

Proof. Note that if the diagram has a cut vertex, then the diagram is also at most two-edge
connected, since removing two edges at the same side of the vertex will also disconnect the
graph in such a case. Therefore, we need only to consider the case when the diagram is at
most two-edge connected. Let Aj (1 � j � n/2 − 1) denote the following event: there exists
a pair of segments �1 and �2 in Rn such that the removal of �1 and �2 in Rn will result in
two non-overlapping random walks, one is of length j . Assume that the diagram becomes
disconnected after removing two edges e1 and e2. Since e1 and e2 belong to some segments
�1 and �2 of the polygon Rn, deleting �1 and �2 from Rn results in two non-overlapping
random walks S1 and S2, and the shorter one of S1 and S2 will contain j segments for some
j � n/2 − 1. In other word, if Rn produces a diagram that is at most two-edge connected,
then one of the Aj ’s will occur. Let us concentrate on the shorter one, say it is S1. In the cases
of A1 and A2, the most we can get from the shorter component after the removing of the two
segments is a simple loop. Thus the probability of getting an almost diagrammatically prime
graph is bounded below by 1 − ∑

3�j�n/2−1 P(Aj ). Let us consider the case of A3. Let �1

and �2 be two segments of Rn separated by three consecutive segments that do not overlap
with the other segments of Rn. Say these three segments have end points U1, U2, U3 and U4

(these are independent 2D random points uniformly distributed in C2). If one of the segments
in S1 satisfies the conditions of � in lemma 1, then the probability for some segments of S2

to intersect this segment is of the order at least 1 − exp(−bn1+2α+β). That is, the probability
that S1 and S2 are non-overlapping is at most exp(−bn1+2α+β) in this case. So what is the
probability that none of the three segments satisfies the conditions of � in lemma 1? Let B be
the set of points of C2 that are within a distance nα from the boundary of C2. There are five
cases to consider depending on how many of U1, U2, U3 and U4 fall in B. �

Case 0. None of U1, U2, U3 and U4 falls in B. This actually happens with a large probability
since the area of B is small. But this means that the four vertices will have to be close to each
other. That is, once we have chosen U1, then U2 can only be in the ball of radius nα centered
at U1, and U3 has to be in the ball of radius nα centered at U2, and so on. The probability of
this is apparently of the order of O(n3α).

Case 1. One of U1, U2, U3 and U4 falls in B. This happens with probability of order nα since
the area of B is of that order. Say U2 is in B. But then U1 and U3 will have to be close to U2
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and U4 will have to be close to U3. An argument similar to the above then yields a probability
of the order O(n4α).

Case 2. Two of U1, U2, U3 and U4 fall in B. This happens with probability of order n2α . Say
U1 and U2 are in B. But then U3 will have to be close to U2 and U4 will have to be close to U3.
We again obtain a probability of the order O(n4α).

Cases 3 and 4. Three or four of U1, U2, U3 and U4 fall in B. These are similar to case 2 and
the probability in both cases is of the order O(n4α).

Summarizing the above, we see that the probability for S1 and S2 to be non-overlapping is
at most of the order exp(−bn1+2α+β) + O(n3α). Since this calculation is based on a particular
choice of the end points of the three segments in S1 and there are O(n) different such choices,
the probability P(A3) is at most of the order n exp(−bn1+2α+β) + O(n1+3α).

In general, we have P(Aj ) � n exp(−bn1+2α+β)+O(n1+jα) by using an argument similar
to the above. This leads to

∑
3�j�n/2−1

P(Aj ) � n2 exp(−bn1+2α+β) + nO

(
n3α

1 − nα

)
= O(n1+3α),

since n2 exp(−bn1+2α+β) < O(n1+3α) and nO
(

n3α

1−nα

) = O(n1+3α). Clearly, if we choose
α = −0.45 and β = −0.05, then for large values of n, the probability that Rn produces an
almost diagrammatically prime 4-regular plane graph is at least 1 − O(n−0.35).

Theorem 1 guarantees that a 2D URP of n vertices is (almost surely) an almost
diagrammatically prime 4-regular plane graph when n is large. However, how many loop
edges are there in such a plane graph on the average? This is a valid question since too many
such edges may affect the total number of non-trivial crossings in the diagram. Also, what
if n is relatively small? To answer this question, we generated 100 000 2D URPs for each n
ranging from 10 to 75 (with an increment of 5) and computed the average crossings before
and after the loop edges are removed from the diagrams. The results are listed in table 1. It is
clear from the table that the loop edges occur very seldom even for small values of n.

Finally, we wish to demonstrate the complexity of the alternating knots generated using
the method described in the last section. For comparison purposes, we will again compute
the determinants of the generated URPs. However, it turns out that these polygons are much,
much more complicated and the computation time increased dramatically. We thus only
focused our effort for one single value of n, namely n = 12. We generated 1000 2D URPs and
converted them into alternating knots according to the procedure described in the last section,
and computed their determinants. Out of these 1000 knots, not a single one allows only the
trivial coloring. The following is a partial list of the results.

DET(12, 1000) = {[1, 0], [3, 38], [5, 38], [7, 32], [9, 13], [11, 27], [13, 7], [15, 25],

[17, 15], [19, 20], [21, 10], [23, 10], [25, 10], [27, 7], [29, 20],

[31, 10], [33, 10], [35, 3], [37, 5], [39, 4], [41, 14], [43, 5],

[45, 7], [47, 1], [49, 5], [51, 12], [53, 4], [55, 5], [57, 4], [59, 4],

[61, 4], [63, 4], [65, 5], [67, 8], [69, 4], [71, 6], [73, 1], [75, 3],

[79, 1], [83, 1], . . . , [868 029, 1], [1728 883, 1], [15 445771, 1]}.

Note that the first missing odd number (other than 1) is 77 from this list, and the distribution
of the frequency is not strictly decreasing as the determinant value increases. The average
determinant here is 41 889.48. On the other hand, for the 3D URPs with 12 vertices, the
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Table 1. ACN is the average number of crossings, AL is the average number of loop edges (namely
the crossings that can be removed via Reidemeister type I moves) and RACN is the reduced average
number of crossings (namely ACN − AL).

n ACN AL RACN

10 8.047 1.234 6.813
15 20.824 0.831 19.993
20 39.296 0.626 38.670
25 63.319 0.531 62.788
30 93.580 0.476 93.104
35 129.476 0.425 129.051
40 171.4934 0.385 171.109
45 218.689 0.365 218.324
50 271.966 0.335 271.631
55 331.693 0.313 331.380
60 396.174 0.290 395.884
65 467.321 0.288 467.033
70 542.954 0.270 542.684
75 624.979 0.259 624.720

following results are from a comparable sample of the same sample size 1000. In this case,
the average determinant is merely 1.42:

DET(12, 1000) = {[1, 851], [3, 116], [5, 21], [7, 5], [9, 4], [11, 1], [13, 1], [21, 1]}.
These numerical results are indeed very convincing that the 2D URPs lend us an efficient

method in generating large prime knots.

5. Conclusions and ending remarks

Circular polymeric chains form complicated knots with high probability when confined to
small volumes [4, 24–26, 37]. This fact is particularly relevant in chromosome biology, since
the DNA molecule needs to be highly condensed to fit in the cell nucleus [17]. Here we
have investigated properties of knots generated by the URP model since this model may be
informative for cases of extreme polymer condensation as it is the case of DNA molecules
packed in bacteriophages, in some animal viruses [8] and in DNA-lipo complexes [33].

As mentioned before, the main disadvantage of the URP model is that the flexibility of the
chain is not properly defined. However, it is still possible to use this model to study physical
systems. For instance, since the knotting probability for DNA circles extracted from phage
P4 is about 0.95, and because of the results in figure 3 one may model such system with 32
segments. From such a model one obtains the following results.

(1) Average projections show around 107 crossings (see figure 2), and many of these
crossings can be removed via Reidemeister moves I and II. In fact, a sample of 100,000 URPs
with 32 vertices yields a mean of 107.338 crossings per projection. After simple Reidemeister
moves of type I and II are applied, the mean number of crossings per projection is reduced to
64.729. This number is somewhat larger than the ACN estimated experimentally. However,
the ACN of the knots found in phage capsids was estimated using the linear relationship
between knot complexity and gel migration proposed in [42] and the actual complexity of
these knots is still unknown.

(2) The knot distributions that the URP model generates, originally studied by Millett in
[26], are also consistent with those found using other polymer models to study DNA packing
in phages [5, 25].
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(3) Knots formed under conditions of confinement are very complex, and it is predicted
that the average determinant of the knots can reach values of O(exp(n2)).

(4) Since it is believed that knots formed under confinement are mostly prime [2, 6]
and since distinguishing between prime and composite knots is a difficult task, we have
investigated sets of knot diagrams that are diagrammatically prime. We have rigorously
shown that a 2D URP with n vertices is almost diagrammatically prime with a probability at
least 1 − O(n−0.35). Our numerical study on this subject shows that most 2D URPs with n
vertices are indeed diagrammatically prime as n increases.

We believe that this method of generating large diagrammatically prime knots may be
useful in knot theory and in polymer physics. Furthermore, we expect that similar analytical
techniques as those presented here may be of help to show rigorous results concerning the
growth rate of the knotting probability for polymers in confinement. Finally, we would like to
make a few remarks about the computational aspects of this work.

Generating random knots is a task we have to perform both in applied and theoretical
studies. From a pure mathematical point of view, an ideal random knot generator would
select a knot with a given minimum crossing number uniformly from the set of all knots
with that minimum crossing number. Of course, random knots generated this way are not to
be confused with the various random polygons used to model subjects such as ring polymers
(whose projections are usually highly redundant in crossings and are usually composite knots).
However, very little is known about the space of large knots (that is, knots with large minimum
crossing numbers). Consequently, it is not possible to develop such an ideal algorithm at this
time. Thus, the best one can hope for is a large knot generating method with no obvious bias
toward certain classes of knots that is easy to implement with a short runtime.

The proposed method in the last section seems to satisfy these naive criteria (at least
for the alternating knots): the polygons are sampled with equal probability; they are very
easy to generate and most of them are indeed large knots. The advantage of this method
over the other known methods [14] is that it is much easier and quicker to produce large
diagrammatically prime knot diagrams (and consequently prime alternating knots) with this
method. Furthermore, this method is obviously ergodic, meaning that any prime (alternating)
knot can be generated by this method with a positive probability. However, it does share
a common drawback with the other two methods [14]: one cannot pre-determine the exact
minimum crossing number of the knot or the knot diagram to be sampled. One way to amend
this problem is through over-sampling. For example, if we want to generate 1000 prime
alternating knots with minimum crossing number 20. Then we can simply generate many
more diagrammatically prime diagrams (with, say, n up to 40) and simply take the first 1000
that has 20 crossings. This is practical since it is very easy to generate these polygons so the
total runtime will not be too large.
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[28] Olavarrieta L, Martinez-Robles M L, Hernandez P, Krimer D B and Schvartzman J B 2002 Mol. Microbiol.

46 699–707
[29] Pathania S, Jayaram M and Harshey R M 2002 Cell 109 425–36
[30] Petrushenko Z M, Lai C H, Rai R and Rybenkov V V 2006 J. Biol. Chem. 281 4606–15
[31] Janse van Rensburg E J, Orlandini E and Whittington S G 2006 J. Phys. A: Math. Gen. 39 13869–903
[32] Rybenkov V V, Cozzarelli N R and Vologodskii A V 1993 Proc. Natl Acad. Sci. USA 90 5307–11
[33] Schmutz M, Durand D, Debin A, Palvadeau Y, Eitienne E R and Thierry A R 1999 Proc. Natl Acad. Sci. USA

96 12293–8
[34] Shaw S Y and Wang J C 1993 Science 260 533–6
[35] Sumners D W and Whittington S G 1989 J. Phys. A: Math. Gen. 22 1471–4
[36] Taylor W R 2007 Comput. Biol. Chem. 31 151–62
[37] Tesi M C, Jance van Rensberg E J, Orlandini E and Whittington S G 1994 J. Phys. A: Math. Gen. 27 347–60
[38] Tesi M C, Janse van Rensburg E J, Orlandini E, Sumners D W and Whittington S G 1994 Phys. Rev. E. 49 868–72
[39] Vazquez M, Colloms S and Sumners D W 2005 J. Mol. Biol. 346 493–504
[40] Virnau P, Kantor Y and Kardar M 2005 J. Am. Chem. Soc. 127 15102–6
[41] Virnau P, Mirny A L and Kardar M 2006 PLoS. Comput. Biol. 152 1074–9
[42] Vologodskii A, Crisona N J, Laurie B, Pieranski P, Katritch V, Dubochet J and Stasiak A 1998 J. Mol. Biol.

278 1–3
[43] Wolfson J S, McHugh G L, Hooper D C and Swartz M N 1985 Nucleic Acids Res. 13 6695–702

http://dx.doi.org/10.1073/pnas.032095099
http://dx.doi.org/10.1073/pnas.0409323102
http://dx.doi.org/10.1103/PhysRevLett.99.058301
http://dx.doi.org/10.1142/S0218216595000090
http://dx.doi.org/10.1088/0305-4470/36/46/002
http://dx.doi.org/10.1016/S0166-8641(03)00182-2
http://dx.doi.org/10.1142/S0218216594000307
http://dx.doi.org/10.1073/pnas.040576797
http://dx.doi.org/10.1016/j.topol.2006.05.010
http://dx.doi.org/10.1016/S0092-8674(00)81018-1
http://dx.doi.org/10.1093/nar/9.16.3979
http://dx.doi.org/10.1002/anie.200460312
http://dx.doi.org/10.1021/ma00098a057
http://dx.doi.org/10.1063/1.2162886
http://dx.doi.org/10.1046/j.1365-2958.2002.03217.x
http://dx.doi.org/10.1016/S0092-8674(02)00728-6
http://dx.doi.org/10.1074/jbc.M504754200
http://dx.doi.org/10.1088/0305-4470/39/45/003
http://dx.doi.org/10.1073/pnas.90.11.5307
http://dx.doi.org/10.1073/pnas.96.22.12293
http://dx.doi.org/10.1126/science.8475384
http://dx.doi.org/10.1016/j.compbiolchem.2007.03.002
http://dx.doi.org/10.1088/0305-4470/27/2/019
http://dx.doi.org/10.1103/PhysRevE.49.868
http://dx.doi.org/10.1016/j.jmb.2004.11.055
http://dx.doi.org/10.1021/ja052438a
http://dx.doi.org/10.1006/jmbi.1998.1696
http://dx.doi.org/10.1093/nar/13.18.6695

	1. Introduction
	2. Uniform random polygons in a confined space
	3. The knot complexity of uniform random polygons
	4. Uniform random polygons as knot diagrams
	5. Conclusions and ending remarks
	Acknowledgments
	References

